HIV-1 bNAbs: Looking Ahead

Marina Caskey, MD Professor of Clinical Investigation The Rockefeller University, New York, NY

This activity is jointly provided by Physicians' Research Network and the Medical Society of the State of New York.

Outline

- Potential roles of HIV-1 bNAbs
- HIV-1 bNAbs clinical data: *Prevention, Therapy, Cure*
- Advances: promising preclinical data, new technologies & delivery systems

Single B cell cloning methods allowed the identification of many bNAbs targeting different epitopes

HIV bNAbs in Clinical Development

Adapted from Mouquet et al., Trends Immunol 2014

Potential roles of bNAbs in HIV-1 infection

Treatment or prevention:

Long-acting alternative to ART

Treatment-free remission:

Immune-mediated control of viral replication

Safety: As a class, mAbs are **considered safe**

Adherence: mAbs **have long half-lives**, that can be prolonged to > 2 months

Provide immediate protection

mAbs might **"boost"** or "improve" existing **immune responses**

mAbs have potential to **directly eliminate infected cells** and therefore interfere with the HIV latent reservoir

Clinical Experience: Safety & Pharmacokinetics

- Safety: 15 "new generation" bNAbs tested in clinical studies to date (including bi- and tri-specific antibodies)
 - Well tolerated: AMP studies : repeated VRC01 >30,000 doses to > 3,000 participant

 Infrequent infusion related reactions (most mild).

 Takuva et al, CROI 2021

Pediatric studies: VRC01LS+10-1074 in Children on ART Capparelli et al, CROI 2021

- 10e8.VLS Grade 3 local reactogenicity, study suspended
- **PK**: Half-lives of naturally occurring bNAbs range between 2-3 weeks
 - Half-life can be extended by ~ 3-fold

HIV-1 bNAbs: Prevention

Antibody Mediated Prevention (AMP) Studies: VRC01 showed overall prevention efficacy of only 18.1%

HVTN 703/HPTN 081

Corey L, NEJM 2021

VRC01 achieved *prevention efficacy* against *neutralization sensitive* viruses

- Prevention can be achieved by bNAb administration However, it is dependent on neutralization sensitivity of circulating strains (only 30% VRC01 sensitive)
- In vitro neutralization assays can predict outcome But predictions based on TZM/bl assays against pseudoviruses were about 1 log "off" from required in vivo sensitivity against "real viruses".
- Viruses from placebo arm tested for other bNAbs triple combination can achieve coverage of 90%

Corey L, NEJM 2021

Antibody Mediated HIV Prevention: Looking Ahead

Challenges:

- Antibody resistance among circulating strains is a major challenge
- Combination of potent antibodies will be needed
 - Will 2 or 3 long-acting antibodies be sufficient?
- Manufacturing challenges / high cost SARS CoV-2 has shown these may be addressed
- LA-cabotegravir has shown efficacy and others are moving into efficacy studies
 - Long-term safety? Risk of resistance emerging to standard therapy?

Opportunities:

- Antibodies may provide a safe/viable alternative for long-term prevention:
 e.g. SC/IM delivery or yearly IV infusions (?)
- May have a niche in special settings: e.g. PMTCT

HIV-1 bNAbs: Therapy Effects on Plasma Viremia

- Across studies: A subset of participants with baseline bNAb resistance
- > Reduction in plasma viremia of ~ 1.5 \log_{10} cp/ml.
- > Viral suppression only achieved with low starting VLs

> Selection of resistant viral strains with monotherapy.

Prolonged viral suppression observed in PGT-121 in 2 ipants with low VLs (< 1,000 cp/ml) (Stephenson, CROI 2019)</p>

Also tested/planned: VRC01, VRC01LS, N6LS, 10-1074, PGT121, PDGM-1400, CAP256V2LS

Combination two bNAbs

3BNC117 +10-1074

Caskey, Klein et al., Nature 2015 Bar-On, Nat Med et al. 2018

HIV-1 bNAbs: Therapy

Engineered antibodies: Increased Potency and/or Breadth

٠

٠

٠

٠

Mono-specific

Bi-specific Tri-specific VRC01/10E8v4-PGDM1400-LS iMab/10e8v2.0 (SAR441236) CODV-Fab VRC01Fab 10E8v4 GDM1400 Sobieszczyk, R4P 2021: Good safety profile A5377: Detected in serum – PK Enrollment ongoing analysis ongoing • No safety concerns No neutralizing ADA (except for 1 participant) to date *VL decline* of 1.5 log₁₀ cp/ml

Binding to different epitopes

HIV-1 bNAbs: Therapy Engineered antibodies: Increased Bioavailability

LS mutations (M428L/N434S) enhance FcRn binding and prolong half-life

- Half-life of LS variants > 3 fold longer than parental mAbs
- > Allows for quarterly SC or yearly IV administration

Gag-specific T cell responses were enhanced

During ART-mediated viral suppression

During bNAb-mediated viral suppression

Niessl et al, Nat Med 2020

HIV bNAbs: Clinical Findings to Date

- bNAbs are generally safe in humans and have half-lives of 2 and 3 wks.
 - LS mutations prolong half-lives by > 3-fold.
- Proof-of-principle that antibody-mediated protection can be achieved against sensitive viruses
 - But also highlights need for improved breadth and potency
- In viremic individuals, single bNAb infusions lead to significant decline is plasma viremia (~1.5 log copies/ml). Resistant strains are selected.
- A combination of two bNAbs lowers viremia and maintains viral suppression for longer period of time than monotherapy.
 - *De novo* resistance to both antibodies did not occur.
- Short-term bNAb studies so far did not show significant changes in latent reservoir size.
- Studies suggest that humoral & T cell responses can be enhanced during bNAb therapy.

HIV-1 bNAbs: Cure or Remission

By direct antiviral activity and Fc-mediated mechanisms bNAbs have the potential to:

- bNAb activity depends on binding to antigen
 - Can CD8⁺ T cell modulation be achieved in the presence of ART?
 - Will control require additional immune modulation and antigen expression: vaccines, TLR agonists or cytokines, as in cancer therapies?

bNAb Studies in NHP Lead to Long-term Viral Control in a Subset of Animals

bNAbs in acute infection: clinical trials planned/underway

Name	Intervention	Population	Status	ΑΤΙ
RV398 (MHRP - Ake)	- VRC01 > ART - VRC01 + ART	Acute infection	Enrolled / analysis ongoing	no
A5388 (ACTG – Crowell/Hsu)	- VRC07-523LS + PGT121BIJ414LS + ART	Acute infection	Planned 2021	yes
RHVIERA (Pasteur – Saez-Cirion)	- 3BNC117-LS + 10-1074-LS + ART	Acute infection	Planned 2021	yes

Combination Immunotherapy to increase antigen expression and modulate innate and adaptive responses

Hsu D, Plos Pathogens in press

Combination immunotherapy: clinical trials planned/underway

Name	Intervention		Population	Status	ΑΤΙ
ROADMAP (Sogaard/Caskey/Fatkenheuer)	3BNC117	Romidepsin	Chronic	CROI2020	yes
eCLEAR (Sogaard/Fidler)	3BNC117	Romidepsin	Early infection (viremic)	Late follow up	yes
A5386 (ACTG –Wilkin/Caskey/Jones)	VRC07-523LS 10-1074	N-803	Chronic	Planned 2021	yes
U01 – RU/Penn/Cornell (Caskey/Wilkin/Tebas)	3BNC117-LS 10-1074-LS	N-803	Chronic	Planned 2021	yes
BEAT HIV2 (Monaner/Tebas)	3BNC117 10-1074	Type I IFN	Chronic	Ongoing	yes
TITAN (Sogaard/Lewin)	3BNC117 10-1074	TLR9	Chronic	Ongoing	yes
amfAR/UCSF (Deeks)	VRC07-523LS 10-1074	DNA/MVA TLR9	Treated during acute infection	Ongoing	yes
A5374 (ACTG – Riddler/Gay/Mellors)	3BNC117-LS* 10-1074-LS*	ChAd/MVA TLR7	Treated during acute infection	Planned 2021	yes

HIV-1 bNAbs Advances

- *New naturally occurring and engineered antibodies* with greater breadth and potency:
 - 1-18 : a new CD4bs bNAb (Schommers et al., Cell 2020)
 - BISC-1A: V2-V3 Loop bi-specific (Davis-Gardner et al., mBio 2020
- *Delivery systems* long-term (in vivo) secretion of bNAbs
 - AAV Vectors
 - DNA Gene Transfer
 - B Cell Engineering

Sustained production of bNAbs by your own cells AAV Vectors

• ADA responses detected Casazza et al., CROI 2020 (LB 41)

Casazza et al. CROI 2021

Sustained production of bNAbs by your own cells DNA Gene Transfer

Successful expression of multiple mAbs
 Maintain binding and neutralizing activity
 In NHP, achieved serum levels of 5 and up to 30 mcg/mL

Wise et al., JCI 2020

Reprogramming B cells to produce bNAbs

Engineered B cells by CRISPR/Cas9 enable **immunological memory** and undergo **clonal expansion** *in vivo*

B cell clones after immunization

Nahmed et al Nat Commun 2020

- Proof-of-concept for antibody-mediated prevention
- Emerging evidence that bNAbs can maintain viral suppression
- Potential advantages: safety & no selection for ARV resistance
- Challenges: pre-existing resistance & cost
- Future: promising new molecules and delivery systems

- An aspirational goal *likely to require combinations*
- Promising results in non-human primates
- Multiple ongoing/planned studies over next 2 yrs
- Early promising data with long-term delivery

Acknowledgements

Study participants

Rockefeller University

Michel Nussenzweig Julio Lorenzi Pilar Mendoza Christian Gaebler

Jill Horowitz Katrina Millard Irina Shimeliovich

Duke University Georgia Tomaras David Montefiori

BIDMC Harvard Michael Seaman

James Whitney

Dartmouth

Margie Ackerman

University of Montreal Daniel Kaufmann Charlie Rice Theodora Hatziioannou Paul Bieniasz

Caltech Pamela Bjorkman

Weill Cornell MedicineTrip GulickBrad JonesTim Wilkin

Albert Einstein Harris Goldstein Barry Zingman Kathy Anastos

Univ. of Pennsylvania Beatrice Hahn Pablo Tebas Katie Bar

Wistar Luis Montaner **Cologne University** Florian Klein Gerd Fatkenheuer

Fred-Hutch Julie McElrath Allan deCamp

Univ. of Washington Connie Celum

Aarhus University Ole Soogard

IAVI Pat Fast

MGH

Raj Gandhi Bruce Walker Johannes Scheid

Brigham & Women's Lindsey Baden

BILL& MELINDA GATES foundation

National Institute of Allergy and Infectious Diseases

ROBERTSON

습 Home

Special Thanks!!

Peter Hunt Sarah Fidler Ole Soogard Katie Bar Pablo Tebas Elaine Abrams Steve Deeks Sandy Vasan Mauricio Martins Lucio Gama

Thank You for Your Attendance! Please visit us at: *www.prn.org*